

Welcome to ‘pathwalker’ documentation!

pathwalker is a micro module containing 2 helper methods for walking either
directories (pathwalker.walk_folder_paths()) or file paths
(pathwalker.walk_file_paths()) providing an additional filtering
by an unix filepath pattern.

[image: A trash panda.]
Installation

Install the latest release from pip.

$ pip install pathwalker

	API reference
	path_is_relative_to

	keep_root_paths

	walk_folder_paths

	walk_file_paths

Basic Usage

Walk through folders only.

>>> from pathwalker import walk_folder_paths
>>> for found_folder in walk_folder_paths(".", filter_pattern = "[!._]*"):
... print(found_folder)
docs
tests

Walk through files only.

>>> from doctestprinter import doctest_iter_print
>>> from pathwalker import walk_file_paths
>>> found_files = sorted(
... walk_file_paths(".", filter_pattern = "[!._]*.py", recursive=True),
... key=lambda x: str(x)
...)
>>> doctest_iter_print(found_files)
docs/conf.py
pathwalker.py
setup.py
tests/path_test.py

Indices and tables

	Index

API reference

	pathwalker.path_is_relative_to(…)

	Return whether or not this path is relative to the other path.

	pathwalker.keep_root_paths(paths)

	Keeps root paths within a list of paths.

	pathwalker.walk_folder_paths(root_path[, …])

	Yields only paths of directories.

	pathwalker.walk_file_paths(root_path[, …])

	Yields only file paths.

path_is_relative_to

	
pathwalker.path_is_relative_to(path_to_check: pathlib.Path, other_path: pathlib.Path) → bool

	Return whether or not this path is relative to the other path.

	Parameters

	
	path_to_check – The path to check for being a sub path of the other path.

	other_path – The other path, which may be a parent path of the path to check.

	Returns

	bool

Examples

>>> from pathwalker import path_is_relative_to
>>> from pathlib import Path
>>> path_is_relative_to(path_to_check=Path("/a/b"), other_path=Path("/a"))
True
>>> path_is_relative_to(path_to_check=Path("/a/b"), other_path=Path("/c"))
False
>>> path_is_relative_to(path_to_check=Path("/ab"), other_path=Path("/a"))
False

keep_root_paths

	
pathwalker.keep_root_paths(paths: List[Union[str, pathlib.Path]]) → List[pathlib.Path]

	Keeps root paths within a list of paths. Sub paths are dropped.

Notes

The purpose of this method is to get the minimum list of paths
for a path recursion afterwards. This should avoid listing the
items of sub paths or double entries within the list.

	Parameters

	paths – Any paths; which will be resolved within this process.

	Returns

	Resolved paths.

	Return type

	List[Path]

Examples

>>> from doctestprinter import doctest_iter_print
>>> from pathlib import Path

The root should remain for later recursion.

>>> sample_paths = (
... "./tests/resources/foo",
... "./tests/resources/bar",
... "./tests/resources/",
... "./tests/resources/foo/bar",
... "./tests/resources/another_bar",
...)
>>> cleared_sample_paths = keep_root_paths(paths=sample_paths)
>>> current_work_path = Path(".").resolve()
>>> doctest_iter_print(
... cleared_sample_paths,
... edits_item=lambda x: x.relative_to(current_work_path)
...)
tests/resources

>>> sample_paths = (
... "./tests/resources/foo",
... "./tests/resources/bar",
... "./tests/resources/foo/bar",
... "./tests/resources/another_bar",
...)
>>> cleared_sample_paths = keep_root_paths(
... paths=sample_paths
...)
>>> current_work_path = Path(".").resolve()
>>> doctest_iter_print(
... cleared_sample_paths,
... edits_item=lambda x: x.relative_to(current_work_path)
...)
tests/resources/another_bar
tests/resources/bar
tests/resources/foo

Double entries are removed from the list leaving single tree roots only.

>>> samples = (
... "./tests/resources/foo",
... "./tests/resources/foo",
... "./tests/resources/bar",
... "./tests/resources/foo/bar",
... "./tests/resources/foo/bar",
... "./tests/resources/another_bar",
... "./tests/resources/another_bar",
...)
>>> cleared_sample_paths = keep_root_paths(
... paths=samples
...)
>>> current_work_path = Path(".").resolve()
>>> doctest_iter_print(
... cleared_sample_paths,
... edits_item=lambda x: x.relative_to(current_work_path)
...)
tests/resources/another_bar
tests/resources/bar
tests/resources/foo

	Warnings:
	This method does resolve the paths. Non existing paths will not be dropped.
Also this function will not raise a FileNotExist-Error for non existing
paths.

>>> samples = (
... "./tests/resources/foo",
... "./not/existing",
... "./not/existing/either",
...)
>>> cleared_sample_paths = keep_root_paths(
... paths=samples
...)
>>> current_work_path = Path(".").resolve()
>>> doctest_iter_print(
... cleared_sample_paths,
... edits_item=lambda x: x.relative_to(current_work_path)
...)
not/existing
tests/resources/foo

walk_folder_paths

	
pathwalker.walk_folder_paths(root_path: Union[str, pathlib.Path], filter_pattern: Optional[str] = None, recursive: bool = False) → Iterator[pathlib.Path]

	Yields only paths of directories.

	Parameters

	
	root_path (Path) – Root path to walk thourgh.

	filter_pattern (str) – Unix path pattern for filtering retrieved paths.

	recursive(bool – Returns also paths of all sub folders.

	Yields

	Path

Examples

>>> from doctestprinter import doctest_iter_print
>>> from pathwalker import walk_folder_paths
>>> found_folders = sorted(
... walk_folder_paths("./tests", filter_pattern = "[!._]*"),
... key=lambda x: str(x)
...)
>>> doctest_iter_print(found_folders)
tests/resources

>>> found_folders = sorted(
... walk_folder_paths("./tests", filter_pattern = "[!._]*", recursive=True),
... key=lambda x: str(x)
...)
>>> doctest_iter_print(found_folders)
tests/resources
tests/resources/another_bar
tests/resources/bar
tests/resources/foo
tests/resources/foo/bar

walk_file_paths

	
pathwalker.walk_file_paths(root_path: Union[str, pathlib.Path], filter_pattern: Optional[str] = None, recursive: bool = False) → Generator[pathlib.Path, None, None]

	Yields only file paths.

	Parameters

	
	root_path (Path) – Root path to walk through.

	filter_pattern (str) – Unix path pattern for filtering retrieved paths.

	recursive(bool – Returns also paths of all sub folders.

	Yields

	Path

Examples

>>> from doctestprinter import doctest_iter_print
>>> from pathwalker import walk_file_paths
>>> found_files = sorted(
... walk_file_paths("tests/.", filter_pattern = "[!._]*.py", recursive=True),
... key=lambda x: str(x)
...)
>>> doctest_iter_print(found_files)
tests/path_test.py
tests/resources/foo.py
tests/test_common_paths.py

Index

 K
 | P
 | W

K

 	
 	keep_root_paths() (in module pathwalker)

P

 	
 	path_is_relative_to() (in module pathwalker)

W

 	
 	walk_file_paths() (in module pathwalker)

 	
 	walk_folder_paths() (in module pathwalker)

 nav.xhtml

 Table of Contents

 		
 Welcome to ‘pathwalker’ documentation!

 		
 API reference

 		
 path_is_relative_to

 		
 keep_root_paths

 		
 walk_folder_paths

 		
 walk_file_paths

_static/plus.png

_static/file.png

_static/minus.png

