pathwalker
Release 1.1.1

David Scheliga

Jul 13, 2021

CONTENTS

1 Installation 3
1.1 APIreference e e e e e 3
1.1.1 path_is_relative_to L. e e 3

1.1.2 keep_root_paths e e 4

1.1.3 walk_folder_paths e e e e e e 6

1.1.4 walk_file_paths e e e e e e 6

2 Basic Usage 9
3 Indices and tables 11
Index 13

pathwalker, Release 1.1.1

pathwalker is a micro module containing 2 helper methods for walking either directories (pathwalker.
walk_folder_paths()) or file paths (pathwalker.walk_file_paths()) providing an additional filtering by an
unix filepath pattern.

CONTENTS 1

pathwalker, Release 1.1.1

2 CONTENTS

CHAPTER

ONE
INSTALLATION
Install the latest release from pip.
$ pip install pathwalker
1.1 API reference
pathwalker.path_is_relative_to(...) Return whether or not this path is relative to the other
path.
pathwalker.keep_root_paths(paths) Keeps root paths within a list of paths.
pathwalker.walk_folder_paths(root_path[,...]) Yields only paths of directories.
pathwalker.walk_file_paths(root_path[, ...]) Yields only file paths.

1.1.1 path_is_relative_to

pathwalker.path_is_relative_to(path_to_check: pathlib.Path, other_path: pathlib.Path) — bool
Return whether or not this path is relative to the other path.

Parameters
» path_to_check — The path to check for being a sub path of the other path.
» other_path — The other path, which may be a parent path of the path to check.

Returns bool

Examples

>>> from pathwalker import path_is_relative_to
>>> from pathlib import Path
>>> path_is_relative_to(path_to_check=Path("/a/b"), other_path=Path("/a"))

True
>>> path_is_relative_to(path_to_check=Path("/a/b"), other_path=Path("/c"))
False
>>> path_is_relative_to(path_to_check=Path("/ab"), other_path=Path("/a"))
False

pathwalker, Release 1.1.1

1.1.2 keep_root_paths

pathwalker.keep_root_paths (paths: List[Union[str, pathlib.Path]]) — List[pathlib.Path]
Keeps root paths within a list of paths. Sub paths are dropped.

Notes

The purpose of this method is to get the minimum list of paths for a path recursion afterwards. This should avoid

listing the items of sub paths or double entries within the list.
Parameters paths — Any paths; which will be resolved within this process.
Returns Resolved paths.
Return type List[Path]

Examples

>>> from doctestprinter import doctest_iter_print
>>> from pathlib import Path

The root should remain for later recursion.

>>> sample_paths = (
"./tests/resources/foo",
./tests/resources/bar",
./tests/resources/",
./tests/resources/foo/bar",
./tests/resources/another_bar",

e)

>>> cleared_sample_paths = keep_root_paths(paths=sample_paths)

>>> current_work_path = Path(".").resolve()

>>> doctest_iter_print(

cleared_sample_paths,

.. edits_item=lambda x: x.relative_to(current_work_path)
.)

tests/resources

>>> sample_paths = (
"./tests/resources/foo",
"./tests/resources/bar",
"./tests/resources/foo/bar",
"./tests/resources/another_bar",

)
>>> cleared_sample_paths = keep_root_paths(
. paths=sample_paths
.)

>>> current_work_path = Path(".").resolve()

>>> doctest_iter_print(

cleared_sample_paths,

.. edits_item=lambda x: x.relative_to(current_work_path)

<)

tests/resources/another_bar

(continues on next page)

4 Chapter 1. Installation

pathwalker, Release 1.1.1

(continued from previous page)

tests/resources/bar
tests/resources/foo

Double entries are removed from the list leaving single tree roots only.

>>> samples = (

./tests/resources/foo",

./tests/resources/foo",

./tests/resources/bar",

./tests/resources/foo/bar",

./tests/resources/foo/bar",

./tests/resources/another_bar",

./tests/resources/another_bar",
)

>>> cleared_sample_paths = keep_root_paths(
paths=samples

)

>>> current_work_path = Path(".").resolve()

>>> doctest_iter_print(
cleared_sample_paths,
edits_item=lambda x: x.relative_to(current_work_path)

)

tests/resources/another_bar

tests/resources/bar

tests/resources/foo

Warnings: This method does resolve the paths. Non existing paths will not be dropped. Also this function will
not raise a FileNotExist-Error for non existing paths.

>>> samples = (
'./tests/resources/foo",
./not/existing",
./not/existing/either",

)
>>> cleared_sample_paths = keep_root_paths(
paths=samples
)
>>> current_work_path = Path(".").resolve()
>>> doctest_iter_print(
cleared_sample_paths,
edits_item=lambda x: x.relative_to(current_work_path)
)
not/existing
tests/resources/foo

1.1. API reference 5

pathwalker, Release 1.1.1

1.1.3 walk_folder_paths

pathwalker.walk_folder_paths (root_path: Union[str, pathlib.Path], filter_pattern: Optional[str] = None,
recursive: bool = False) — Iterator[pathlib.Path]
Yields only paths of directories.

Parameters
» root_path (Path) — Root path to walk thourgh.
» filter_pattern (str) — Unix path pattern for filtering retrieved paths.
» recursive(bool — Returns also paths of all sub folders.

Yields Path

Examples

>>> from doctestprinter import doctest_iter_print

>>> from pathwalker import walk_folder_paths

>>> found_folders = sorted(
walk_folder_paths("./tests", filter_pattern = "[!._]%"),
key=lambda x: str(x)

<)
>>> doctest_iter_print(found_folders)
tests/resources

>>> found_folders = sorted(
walk_folder_paths("./tests", filter_pattern
key=lambda x: str(x)

"[1._1*", recursive=True),

.)
>>> doctest_iter_print(found_folders)
tests/resources
tests/resources/another_bar
tests/resources/bar
tests/resources/foo
tests/resources/foo/bar

1.1.4 walk_file_paths

pathwalker.walk_file_paths (root_path: Union[str, pathlib.Path], filter_pattern: Optional[str] = None,
recursive: bool = False) — Generator[pathlib.Path, None, None]
Yields only file paths.

Parameters
e root_path (Path) — Root path to walk through.
o filter_pattern (str) — Unix path pattern for filtering retrieved paths.
» recursive(bool — Returns also paths of all sub folders.

Yields Path

6 Chapter 1. Installation

pathwalker, Release 1.1.1

Examples

>>> from doctestprinter import doctest_iter_print

>>> from pathwalker import walk_file_paths

>>> found_files = sorted(
walk_file_paths("tests/.", filter_pattern = "[!._]*.py", recursive=True),
key=lambda x: str(x)

<)

>>> doctest_iter_print(found_files)

tests/path_test.py

tests/resources/foo.py

tests/test_common_paths.py

1.1. API reference 7

pathwalker, Release 1.1.1

8 Chapter 1. Installation

CHAPTER
TWO

BASIC USAGE

Walk through folders only.

>>> from pathwalker import walk_folder_paths

>>> for found_folder in walk_folder_paths(".", filter_pattern = "[!._]*"):
print (found_folder)

docs

tests

Walk through files only.

>>> from doctestprinter import doctest_iter_print

>>> from pathwalker import walk_file_paths

>>> found_files = sorted(
walk_file_paths(".", filter_pattern = "[!._]*.py", recursive=True),
key=lambda x: str(x)

.)

>>> doctest_iter_print(found_files)

docs/conf.py

pathwalker.py

setup.py
tests/path_test.py

pathwalker, Release 1.1.1

10 Chapter 2. Basic Usage

CHAPTER
THREE

INDICES AND TABLES

* genindex

11

pathwalker, Release 1.1.1

12 Chapter 3. Indices and tables

K

keep_root_paths() (in module pathwalker), 4

P

path_is_relative_to() (in module pathwalker), 3

W

walk_file_paths() (in module pathwalker), 6
walk_folder_paths() (in module pathwalker), 6

INDEX

13

	Installation
	API reference
	path_is_relative_to
	keep_root_paths
	walk_folder_paths
	walk_file_paths

	Basic Usage
	Indices and tables
	Index

